Skip to content

Managed Kafka Services

Managed Kafka services provide Apache Kafka without operational overhead, handling infrastructure, scaling, and maintenance.


Benefits of Managed Services

Benefit Description
No operations Provider handles upgrades, patches, monitoring
Automatic scaling Scale throughput and storage on demand
High availability Built-in replication across availability zones
Security Managed encryption, authentication, authorization
Cost efficiency Pay for what is used, no over-provisioning

Cloud Provider Services

AWS MSK (Managed Streaming for Apache Kafka)

Amazon MSK provides fully managed Apache Kafka clusters.

Features:

  • Apache Kafka compatibility
  • Multi-AZ deployment
  • Integration with AWS services
  • MSK Connect for connectors
  • MSK Serverless option

Configuration:

# AWS CLI - Create cluster
aws kafka create-cluster \
  --cluster-name my-kafka-cluster \
  --broker-node-group-info file://broker-config.json \
  --kafka-version 3.5.1 \
  --number-of-broker-nodes 3

Connection:

bootstrap.servers=b-1.cluster.region.amazonaws.com:9092,b-2.cluster.region.amazonaws.com:9092
security.protocol=SASL_SSL
sasl.mechanism=AWS_MSK_IAM
sasl.jaas.config=software.amazon.msk.auth.iam.IAMLoginModule required;
sasl.client.callback.handler.class=software.amazon.msk.auth.iam.IAMClientCallbackHandler

Azure Event Hubs for Kafka

Azure Event Hubs provides a Kafka-compatible endpoint.

Features:

  • Kafka protocol support
  • Auto-scaling throughput units
  • Integration with Azure services
  • Capture to Azure Storage

Connection:

bootstrap.servers=namespace.servicebus.windows.net:9093
security.protocol=SASL_SSL
sasl.mechanism=PLAIN
sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule required username="$ConnectionString" password="Endpoint=sb://...";

Google Cloud Managed Service for Apache Kafka

Google Cloud provides managed Kafka clusters.

Features:

  • Native Apache Kafka
  • Integration with GCP services
  • VPC connectivity
  • Automatic scaling

Aiven for Apache Kafka

Aiven provides multi-cloud managed Kafka.

Features:

  • Available on AWS, GCP, Azure
  • Apache Kafka with add-ons
  • Kafka Connect included
  • Schema Registry included

Selection Criteria

Criteria Considerations
Cloud provider Existing infrastructure, data locality
Kafka compatibility Native Kafka vs Kafka-compatible
Throughput Peak message rate, burst capacity
Latency P99 latency requirements
Features Connect, Schema Registry, Streams
Compliance Data residency, certifications
Cost Per-hour, per-GB, reserved capacity

Comparison

Feature AWS MSK Azure Event Hubs GCP Managed Kafka
Native Kafka Yes Kafka protocol Yes
Serverless Yes Yes No
Connect MSK Connect No Yes
Schema Registry Glue SR No Yes
Multi-region Manual Geo-DR Manual

Migration to Managed

Planning

  1. Inventory topics and configurations
  2. Assess client compatibility
  3. Plan data migration strategy
  4. Configure networking (VPC, peering)
  5. Set up authentication/authorization

Data Migration

MirrorMaker 2:

# mm2.properties
clusters=source,target
source.bootstrap.servers=old-kafka:9092
target.bootstrap.servers=managed-kafka:9092

source->target.enabled=true
source->target.topics=.*

replication.factor=3
connect-mirror-maker.sh mm2.properties

Client Migration

  1. Update bootstrap servers
  2. Configure authentication
  3. Test connectivity
  4. Gradual traffic shift
  5. Decommission old cluster

Connectivity

VPC/Private Connectivity

Most managed services support private networking:

Provider Private Access
AWS MSK VPC, PrivateLink
Azure Private Endpoint
GCP Private Service Connect
Aiven VPC Peering, PrivateLink

Public Access

For development or when private networking is not required:

# With TLS and authentication
bootstrap.servers=public-endpoint:9094
security.protocol=SASL_SSL

Monitoring

Managed services provide built-in monitoring:

Provider Monitoring
AWS MSK CloudWatch, Open Monitoring
Azure Azure Monitor
GCP Cloud Monitoring
Aiven Built-in dashboards, integrations

Cost Optimization

Strategy Description
Right-size brokers Match instance size to workload
Reserved capacity Commit for discounts
Tiered storage Offload cold data to object storage
Compression Reduce storage and network costs
Retention tuning Keep only necessary data